Frontal Oscillatory Dynamics Predict Feedback Learning and Action Adjustment
نویسندگان
چکیده
Frontal oscillatory dynamics in the theta (4-8 Hz) and beta (20-30 Hz) frequency bands have been implicated in cognitive control processes. Here we investigated the changes in coordinated activity within and between frontal brain areas during feedback-based response learning. In a time estimation task, participants learned to press a button after specific, randomly selected time intervals (300-2000 msec) using the feedback after each button press (correct, too fast, too slow). Consistent with previous findings, theta-band activity over medial frontal scalp sites (presumably reflecting medial frontal cortex activity) was stronger after negative feedback, whereas beta-band activity was stronger after positive feedback. Theta-band power predicted learning only after negative feedback, and beta-band power predicted learning after positive and negative feedback. Furthermore, negative feedback increased theta-band intersite phase synchrony (a millisecond resolution measure of functional connectivity) among right lateral prefrontal, medial frontal, and sensorimotor sites. These results demonstrate the importance of frontal theta- and beta-band oscillations and intersite communication in the realization of reinforcement learning.
منابع مشابه
Reinforcement learning based feedback control of tumor growth by limiting maximum chemo-drug dose using fuzzy logic
In this paper, a model-free reinforcement learning-based controller is designed to extract a treatment protocol because the design of a model-based controller is complex due to the highly nonlinear dynamics of cancer. The Q-learning algorithm is used to develop an optimal controller for cancer chemotherapy drug dosing. In the Q-learning algorithm, each entry of the Q-table is updated using data...
متن کاملFrontal theta links prediction errors to behavioral adaptation in reinforcement learning
Investigations into action monitoring have consistently detailed a frontocentral voltage deflection in the event-related potential (ERP) following the presentation of negatively valenced feedback, sometimes termed the feedback-related negativity (FRN). The FRN has been proposed to reflect a neural response to prediction errors during reinforcement learning, yet the single-trial relationship bet...
متن کاملBrain oscillatory activity associated with task switching and feedback processing.
In this study, we sought to dissociate event-related potentials (ERPs) and the oscillatory activity associated with signals indicating feedback about performance (outcome-based behavioral adjustment) and the signals indicating the need to change or maintain a task set (rule-based behavioral adjustment). With this purpose in mind, we noninvasively recorded electroencephalographic signals, using ...
متن کاملFrontal Theta Oscillatory Activity Is a Common Mechanism for the Computation of Unexpected Outcomes and Learning Rate
In decision-making processes, the relevance of the information yielded by outcomes varies across time and situations. It increases when previous predictions are not accurate and in contexts with high environmental uncertainty. Previous fMRI studies have shown an important role of medial pFC in coding both reward prediction errors and the impact of this information to guide future decisions. How...
متن کاملFeedback-related Negativity Codes Prediction Error but Not Behavioral Adjustment during Probabilistic Reversal Learning
We assessed electrophysiological activity over the medial frontal cortex (MFC) during outcome-based behavioral adjustment using a probabilistic reversal learning task. During recording, participants were presented two abstract visual patterns on each trial and had to select the stimulus rewarded on 80% of trials and to avoid the stimulus rewarded on 20% of trials. These contingencies were rever...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cognitive neuroscience
دوره 23 12 شماره
صفحات -
تاریخ انتشار 2011